Growth of Functions

Exercises

Following taken from page 50 of Cormen et al. (2001)

Exercises

3.1-1

Let $f(n)$ and $g(n)$ be asymptotically nonnegative functions. Using the basic definition of Θ-notation, prove that $\max (f(n), g(n))=\Theta(f(n)+g(n))$.

3.1-2

Show that for any real constants a and b, where $b>0$,
$(n+a)^{b}=\Theta\left(n^{b}\right)$.
3.1-3

Explain why the staternent, "The running time of algorithm A is at least $O\left(n^{2}\right)$," is meaningless.
3.1-4

Is $2^{n+1}=O\left(2^{n}\right)$? Is $2^{2 n}=O\left(2^{n}\right)$?

3.1-5

Prove Theorem 3.1.

3.1-6

Prove that the running time of an algorithm is $\Theta(g(n))$ if and only if its worst-case running time is $O(g(n))$ and its best-case running time is $\Omega(g(n))$.

3.1-7

Prove that $o(g(n)) \cap \omega(g(n))$ is the empty set.

3.1-8

We can extend our notation to the case of two parameters n and m that can go to infinity independently at different rates. For a given function $g(n, m)$, we denote by $O(g(n, m))$ the set of functions

$$
\begin{aligned}
O(g(n, m))=\{f(n, m): & \text { there exist positive constants } c, n_{0} \text {, and } m_{0} \\
& \text { such that } 0 \leq f(n, m) \leq c g(n, m) \\
& \text { for all } \left.n \geq n_{0} \text { or } m \geq m_{0}\right\} .
\end{aligned}
$$

Give corresponding definitions for $\Omega(g(n, m))$ and $\Theta(g(n, m))$.

